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Abstract. Using the quantum transport equations for interacting electrons and phonons we
study the phonon effects in the thermoelectric transport in impure metals. The contributions of
both equilibrium phonons (the diffusive part) and non-equilibrium phonons (the drag effect) are
investigated. We show that the drag effect which dominates in the thermopower of pure samples
is strongly suppressed even by a small impurity concentration owing to the inelastic electron–
impurity scattering processes. As a result we find the form of the phonon drag thermopower of
an impure metal taking into account both normal and Umklapp processes of the electron–phonon
scattering.

1. Introduction

The thermoelectric transport properties of metals are difficult to calculate and measure
compared with the electrical transport properties. From the theoretical point of view
this difficulty is because of the compensative nature of the thermoelectricity. Indeed, the
thermoelectric effect in metals is a small result of two opposing currents owing to electrons
and holes which almost completely cancel. The surviving small difference strongly depends
upon the electron band structure, the phonon spectrum and the peculiarities of the scattering
mechanisms. The measurable quantity is the thermopower, or the Seebeck coefficient,
S = −β/σ , where σ and β are the conductivity and the thermoelectric coefficient,
respectively (defined asj = σE + β∇T , wherej, E and ∇T are the electric current,
external electric field and temperature gradient, respectively). In the most simple scenario the
thermopower of a normal metal contains two contributions. The first of them is the diffusive
part Sd connected with the expansion of the energy-dependent electronic parameters near
the Fermi level by the parameterT/EF (T is the temperature, andEF is the Fermi energy).
The diffusive part of the thermopower is negative for electrons and positive for holes. The
second relevant term is the so-called phonon drag contribution which is induced only by the
non-equilibrium correction to the phonon distribution function and has the order(T /2D)

3

(2D is the Debye temperature, and we consider the low-temperature caseT � 2D). It is
clear that the phonon drag contributionSg can be ignored only at rather low temperatures
T � (2D/EF )

1/22D. Sg has the same sign asSd for normal electron–phonon processes,
and the opposite sign for Umklapp electron–phonon processes. Thus, the total sign of the
phonon drag contribution is conditioned by the form of the Fermi surface, which governs
whether the normal or the Umklapp processes dominate. The interplay of the two termsSd
andSg can explain the features of the thermopower of pure metals [1].
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The situation with dirty metallic systems and alloys is much more complicated because
the mechanism of the influence exerted by impurities on the phonon drag was not well
understood until now. It is clear from the qualitative point of view thatSg is maximal when
electrons are the main scatterers for phonons, while the activation of other phonon scattering
mechanisms results in the rapid suppression of the drag effect. At high temperaturesT ' 2D

the phonon–phonon scattering plays the essential role leading to the 1/T decrease inβg with
the temperature growth [1, 2]. At low temperatures the effective rate of the phonon–phonon
scattering falls off asq3

T (qT ∼ T/u is the characteristic wavevector of a thermal phonon,
andu is the sound velocity). Moreover, the scattering of long-wave phonons on each other
conserves the total wavevector, and hence such processes cannot be responsible for the
relaxation of the total quasi-momentum of the phonon subsystem. This relaxation requires
the Umklapp processes, and their probability falls off exponentially at low temperatures as
exp(−10/T ), where10 has the order of the Debye temperature2D. In dirty metals or
alloys the direct phonon scattering on impurities with its probability proportional tocimpq

4
T

(cimp is the impurity concentration) can also become sufficient for the suppression of the
phonon drag contribution. At the same time, the scattering rate owing to this mechanism
quickly decreases with the decrease of temperature and cannot be responsible for the low-
temperature suppression ofSg in dirty systems. We have shown that this suppression
may take place at lower impurity concentrations than those required for the effective direct
phonon–impurity scattering [3]. This fact is the result of the processes of inelastic scattering
of electrons on impurities with the emission or absorption of a phonon accompanied by the
dissipation of the total momentum of the phonon subsystem. This inelastic electron–impurity
scattering also makes an important contribution to the conductivity of an impure metal at low
temperatures together with other electron–phonon–impurity interference processes [4, 5].

To estimate the relative change of the phonon drag contribution to the thermopower
of an impure system one must take into account that at low temperatures the ratio of the
phonon emission or absorption rate owing to the inelastic electron–impurity scattering to
the rate of ‘pure’ phonon–electron scattering is of the order(qT l)

−1, wherel is the electron
mean free path [5]. Thus, the relative correction to the phonon drag contribution to the
thermopowerSg (the ‘drag thermopower’) owing to such processes assumes the following
form

Sg(cimp)− Sg(0)
Sg(0)

∼ − 1

qT l
∼ −cimp 2D

T
. (1)

Many aspects of the phonon effects in the thermoelectric transport have been widely
discussed. Phonons can affect the thermoelectric power in metals in two ways. The first
is the influence of virtual phonons with the characteristic wavevector of the order of the
Debye one. These phonons renormalize the thermoelectric power similarly to the electron
mass enhancement [6, 7]. The second way is connected with thermal (real) phonons which
affect the diffusive component (inducing the corrections similar to Bloch contribution to
conductivity) and are also responsible for the drag component. The electron–phonon
contribution to the diffusive thermopower was studied quasi-classically in a number of works
(see, e.g., [8, 9]). The drag contribution to the thermopower was studied theoretically using
the Boltzmann equation in the relaxation time approximation in [10, 11] (for a 3D metal)
and in [12, 13] (for a 2D metal) and experimentally in [14–16] and very recently in [17]. In
an impure metal at sufficiently low temperatures the electron–phonon scattering interferes
with the impurity scattering generating the additional corrections both to the diffusive and
to the drag thermopower. In this regime the quasi-classical approach becomes inadequate
and one should use the system of quantum kinetic equations for electrons and phonons.
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The role of the thermal phonons in the thermopower of impure 3D metallic systems at low
temperatures is discussed in the present paper.

The paper is organized as follows. In section 2 we formulate the quantum transport
equations for the interacting electron–phonon system with phonons supposed to be non-
equilibrium. In section 3 we study the phonon-induced corrections to the diffusive
component of the thermopower. The phonon drag component in impure metals is studied
in section 4. Finally, in section 5 we compare different contributions and discuss the
experimental situation.

2. Kinetic equations for electrons and phonons

In this section we describe the formalism that can be used to investigate the electron–phonon
kinetics of normal metals. This formalism is based on the diagrammatic technique for non-
equilibrium systems developed by Keldysh [18] where the Green functions of electrons and
phonons, as well as the electron self-energy and the polarization operator are represented
by matrices:

Ĝ =
(

0 GA

GR GC

)
D̂ =

(
0 DA

DR DC

)
6̂ =

(
6C 6R

6A 0

)
5̂ =

(
5C 5R

5A 0

)
. (2)

Here the indicesA andR stand for advanced and retarded functions, respectively, while the
diagonal componentsGC andDC contain the information about the statistical distribution
of electrons and phonons. The kinetic equation for electrons was derived in [4, 18] where
thermal equilibrium was assumed for the phonon subsystem. However, it is well known
that the thermoelectric response is governed by two equally important contributions, the
diffusive thermopower and the drag effect. The former is connected with the electron–hole
asymmetry, and the latter is the contribution of the non-equilibrium of the phonon subsystem.
Indeed, if the phonon–electron interaction is not small compared with other mechanisms of
phonon scattering, the phonons are ‘dragged’ by the non-equilibrium electrons producing
the phonon thermal current as a response to the external electric field. Hence in order
to describe the phonon drag contribution to the thermopower one has to write a separate
kinetic equation for phonons and solve it together with the kinetic equation for electrons.
The quasi-classical limit of this system of kinetic equations was studied in a number of works
(see, e.g., [19]). At high temperatures the quasi-classical approach is quite sufficient for
the description of the electron–phonon kinetics. However, at low temperatures the quantum
many-particle (interaction interference) effects become significant and must be taken into
account. For example, as we will see below, at sufficiently low temperatures the processes
of the phonon emission or absorption connected with the inelastic scattering of electrons
on impurities dominate over the phonon–phonon and direct phonon–impurity scattering.
Hence one should use a quantum analogue of the well known kinetic equation for phonons
to describe the dependence of the drag effect on temperature and impurity concentration at
low temperatures.

The derivation of the quantum kinetic equation for phonons follows that of the kinetic
equation for electrons [4, 18]. We take the non-perturbed phonon Green function in the
following form

DR
λ (ω, q) = [DA

λ (ω, q)]
∗ = ωλ(q)

2

(
1

ω − ωλ(q)+ i0
− 1

ω + ωλ(q)+ i0

)
(3)



7556 K D Belashchenko and D V Livanov

whereωλ(q) is the dispersion law for the given branch of the phonon spectrum denoted as
λ. First we must write down the Dyson’s equation for the phonon Green function in two
ways:

D−1
0 (x2)D̂(x2, x1) = σ̂xω2

λ(−i∇2)

[
δ(x2− x1)+

∫
d4y 5̂(x2, y)D̂(y, x1)

]
(4a)

D−1
0 (x1)D̂(x2, x1) = ω2

λ(i∇1)

[
δ(x2− x1)+

∫
d4y D̂(x2, y)5̂(y, x1)

]
σ̂x (4b)

where x = (t, r), D−1
0 (x) = −∂2/∂t2 − ω2

λ(−i∇), and σ̂x is the known Pauli matrix.
The equations (2) must be written separately for each branch of the phonon spectrum; the
corresponding indices of the phonon Green function and polarization operator are omitted.
For acoustic phonons in the Debye approximationω2

λ(−i∇) = −u2
λ1, whereuλ is the sound

velocity and1 is the Laplacian operator. Since phonons do not carry electric charge, the
Dyson’s equation for phonons does not contain the potentials of the electromagnetic field.

Taking the difference of the 22-components of (4a) and (4b), entering new variables
X = (x1 + x2)/2 = (t,R) and x = x2 − x1 = (θ, r) and performing the Fourier
transformation over the relative coordinates

D̂(ω, q, X) =
∫

dθ dr D̂(θ, r, X)exp(iθω − irq) (5)

we obtain the kinetic equation for phonons

−2i

[
ω
∂

∂t
+ ∂ω

2
λ(q)

∂q
∇R
]
DC(ω, q,R, t) = ω2

λ(q)[5
C(DR −DA)−DC(5R −5A)]

+ i

2
ω2
λ(q){DR +DA,5C} + i

2
ω2
λ(q){DC,5R +5A}

+ i

2
{ω2

λ(q),5
CDA +5RDC} + i

2
{ω2

λ(−q),DR5C +DC5A}. (6)

Here we introduced the Poisson brackets arising from the non-homogeneity of the system
(see [4])

{f, g} =
(
∂f

∂ω

∂g

∂t
− ∂g

∂ω

∂f

∂t

)
+
(
∂f

∂R

∂g

∂q
− ∂g

∂R

∂f

∂q

)
. (7)

In equilibriumDC = h0(ω)(D
R − DA) whereh0(ω) = coth(ω/2T ). In the general case

this component can be presented in the following form

DC = h(ω, q, X)(DR −DA)+ i

2
{DR +DA, h}. (8)

The left-hand side of (6) may be expressed as i{DC,ω2− ω2
λ(q)}. Substituting (8) into (6)

we obtain

i{h, ω2− ω2
λ(q)}(DR −DA) = ω2

λ(q)[5
C − h(5R −5A)+ i

2
{h,5R +5A}](DR −DA)

+ i

2
ω2
λ(q){DR +DA,5C − h(5R −5A)}

+ i

2
{ω2

λ(q),5
C − h(5R −5A)} (DR −DA). (9)

The last two terms in (9) are quadratic with respect to the external perturbation and may be
neglected in the theory of linear response. Finally, we obtain

i{h, ω2− ω2
λ(q)} = ω2

λ(q) [5C − h(5R −5A)+ i

2
{h,5R +5A}]. (10)
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This is the general kinetic equation for phonons. The coordinate derivatives in the Poisson
brackets reflect the influence of the temperature gradient:∂/∂R = ∇T ∂/∂T . If there is no
temperature gradient, all Poisson brackets vanish.

The kinetic equation for phonons is very similar to the known kinetic equation for
electrons derived in [4]

i{ε − ε(p), S} = 6C − S(6A −6R)+ 1
2i {6A +6R, S}. (11)

Hereε is the electron energy,ε(p) is the electron dispersion function (we assume the single-
band spectrum, but the generalization of (11) for the multi-band case is straightforward),
andS(ε,p, X) is the electron distribution function (in equilibriumS0(ε) = − tanh(ε/2T )).
Equations (10) and (11) form a closed system for the variable functionsh and S. The
electron distribution functionS enters (10) through the polarization operator5̂, while the
phonon functionh enters (11) through the electron self-energy6̂.

The thermoelectric coefficients may be calculated in two equivalent ways. The first way
is to find the thermal current as a response to the external electric field, and the second way
is to calculate the electric current generated by the applied temperature gradient. The first
approach is more simple for the calculation of the drag effect because of the vanishing of
all Poisson brackets in the phonon kinetic equation

5C − h(ω, q)(5R −5A) = 0. (12)

To find the drag contribution to the thermopower one must substitute the phonon distribution
functionh obtained from (12) into the expression for the phonon thermal current

Qph =
∑
q

dω (q)

dq
ω(q)b+q bq =

i

2

∫
ω

dωq
dq

DC(ω, q,E)

ωq

d3q dω

(2π)4
(13)

whereb+q and bq are the phonon creation and annihilation operators; the thermal current
(13) is connected with the drag thermoelectric coefficientβg asQph = −βgTE.

The second approach is more convenient for the calculation of the phonon corrections
to the diffusive thermopower. Here we present the main formulae for this procedure.

The electron kinetic equation for a system with the temperature gradient has the
following form

v∇T ∂S
∂T
= I (S) (14)

where the collision integral

I (S) = −i[6C − S(6A −6R)] + i

2
{6A +6R, S}. (15)

Note that the components of the self-energy in the first term of equation (15) also contain
the corrections in the form of the Poisson brackets.

The electron distribution function is found by iterations

S(ε,p) = S0(ε)+ φ0(ε,p)+ φ1(ε,p) (16)

whereφ0 is the term generated by the elastic impurity scattering andφ1 is the contribution
of the phonon scattering processes (or any other interactions), together with the phonon
renormalization of the impurity scattering integral. The elastic impurity scattering in our
model is described by a short-range isotropic electron–impurity potentialVe–imp = V0δ(r).
In this approximationφ0(ε,p) = −τv∇T ∂S0/∂T , where

τ = (πν(0)Nimp|V0|2)−1 (17)
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is the momentum relaxation time,ν(0) = mpF/π2 is the single-electron density of states
at the Fermi level (m is the electron mass andpF is the Fermi momentum), andNimp is
the number of impurity atoms per unit volume. The valueV0 has the order ofν(0)−1. It
is assumed that|φ0| � |φ1|, i.e. the impurity scattering is much stronger than all other
scattering mechanisms (see also the discussion in section 4).

The electric current

j = 2e
∫
vS(ε,p) ImGA(ε,p)

d3p dε

(2π)4
(18)

is connected with the diffusive thermoelectric coefficientsβd and βg as j = βd∇Tel +
βg∇Tph, where∇Tel and∇Tph are the temperature gradients in the electron and phonon
subsystems, respectively. Solving the kinetic equation for electrons assuming the phonon
subsystem to be in equilibrium, we can obtain the diffusive contribution to the thermoelectric
coefficientβd . Note that the factorGA in (18) also contains the phonon-induced contribution:
δphG

A(S) = GA
0

2
6A
ph(S) where6A

ph is the contribution of the phonon processes into the
electron self-energy.

Below we will use the kinetic equations to describe theinfluence of the phonons
and impurities on the diffusive thermopower (section 3) and on the phonon drag effect
(section 4).

3. Phonon corrections to the diffusive thermopower of an impure metal

Similarly to the phonon effects in the conductivity of an impure metal [4, 5] one can expect
to observe two corrections to the diffusive thermoelectric coefficient: the one connected
with the pure electron–phonon interaction, and the interference correction induced by the
inelastic scattering of electrons on impurities with the emission or absorption of a phonon.

Below we will calculate the phonon corrections to the diffusive thermopower following
the procedure described in section 2. To this end, we will find the electric current as
a response to the applied temperature gradient assuming that the phonon subsystem is
maintained in equilibrium. The application of the quantum kinetic equation formalism to
the thermopower problem was described in detail in [7]. However, we emphasize that here
we are interested in the role of thermal phonons with the characteristic wavevectorqT , but
not the phonon renormalization of the thermoelectric coefficient by virtual phonons studied
in [7]. Therefore, in the calculation of the thermoelectric coefficient we will be interested
in the terms containing the imaginary part of the phonon propagator ImDR(ω, q).

The diagrams for the electron self-energy describing the contribution of both the
pure electron–phonon interaction (the analogue of the Bloch–Grüneisen correction to the
conductivity of an impure metal) and the interference processes (including the inelastic
scattering of electrons on impurities) coincide with those relevant to the calculation of
the corrections to the conductivity [5]. Some of these diagrams are shown in figure 1.
The vertices of pure electron–phonon scatteringgkij and of inelastic electron scattering on
impuritiesγ kij have the following form (see [5]; note the difference in the definition of the
phonon propagator):

gkij = igλ(q)K
k
ij gλ(q) = 2EF

3
√
MN

qeλ
ωλ(q)

γ kij = i
V0√
MN

(p− p′)eλ
ωλ(q)

Kk
ij (19)

whereK1
ij = 2−1/2δij , K2

ij = 2−1/2(σx)ij , M is the ion mass,N is the number of elementary
cells per unit volume,p andp′ are the initial and final electron momenta, respectively, and
eλ is the phonon polarization vector.
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Figure 1. Some diagrams for the electron self-energy. Full curves are the electron propagators,
wiggly curves are the phonon propagators, and broken curves represent the impurity scattering.

Diagram 1 in figure 1 describes the pure electron–phonon interaction, while other
diagrams relate to the interference processes. As we will see below, the contribution of
the interference diagrams to the thermopower is usually much less than that of the drag
effect. Therefore, some diagrams of this type were omitted in figure 1 (for the full set of
diagrams, see [5]). Diagram 1 gives the usual electron–phonon collision integralI0(p, ε) if
one ignores all Poisson brackets in equation (15)

I0(ε,p) = −8
∫

d3q dω

(2π)4
|gl(q)|2 ImGA

0 (ε + ω,p+ q) ImDR
l (ω, q)Rl(ε,p, ω, q) (20)

where

Rλ(ε,p, ω, q) = 1
4{hλ(ω, q)[S(ε,p)− S(ε + ω,p+ q)] + S(ε,p)S(ε + ω,p+ q)− 1}

(21)

and the indicesl in (20) relate to the longitudinal branch of the phonon spectrum. Assuming
the phonons to be in equilibrium we determine the phonon correction to the electronic
distribution functionφ1(ε,p). Next we calculate the correction to the thermoelectric
coefficient according to the general expression (18). Finally after integration overp we
obtain

βe–ph = −2eπ2

3

∫
d3q dε dω

(2π)5
|gl(q)|2 ImDR

l (ω, q)
τ 2νvF

q
S0(ε)

∂

∂T
R0(ε, ω) (22)

where vF is the Fermi velocity,R0(ε, ω) is obtained from (21) with the substitution of
the equilibrium functionsS0 andh0, and the derivative overT acts only on the electronic
distribution functions. The integration of the last expression overε and ω requires the
usual expansion of the energy-dependent electron spectrum parameters near the Fermi level
because the integrand is uneven in the zero approximation. The integration yields

βe–ph = −4

3
ζ(5)eα

τ 2vFT
4

EFu
2
l

(23)

where ζ(x) is the Riemann zeta-function (ζ(5) ≈ 1.03) andα = |gl(q)|2ν(0)/2 is the
dimensionless constant of electron–phonon interaction. This is the contribution of the pure
electron–phonon interaction to the diffusive thermopower; in this sense it is analogous to
the Bloch–Gr̈uneisen contribution to the conductivity of an impure metal [4, 7].

Next we will study the correction to the diffusive thermoelectric coefficient induced by
the processes described by the interference diagrams as well as by the terms with Poisson
brackets in the contribution from diagram 1. Note that the interference contribution is
connected both with the longitudinal and the transverse phonons; the contribution of the latter
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is partially described by diagram 4. It will be clear from the following that the interference
contributions contain the same dependence on temperature and impurity concentration as
the phonon drag contribution described in the next section, but are much less in magnitude
by the parameterm/M. In order to estimate the magnitude of this correction we calculate
the contribution to diagram 1 induced by the Poisson brackets in equation (15). Here the
corrections to the self-energy are non-zero only due to the modification ofGC . We have

δ6A = 1

4

∫
d3q dω

(2π)4

(
v + q

m
,∇T

)
|gl(q)|2ε + ω

T

∂S0(ε + ω)
∂ε

DA
l (ω, q)

×[GA2
(ε + ω,p+ q)+GR2

(ε + ω,p+ q)]. (24)

Substituting the self-energy (24) into (18) and integrating over the electron momentum we
obtain the interference correction to the thermoelectric coefficient

βe–ph–imp = −πe
∫

d3q dε dω

(2π)5
ImDR

l (ω, q)|gl(q)|2
ντ

q2

ε + ω
T

S0(ε)
∂S0(ε + ω)

∂ε
. (25)

Finally, expanding the integrand near the Fermi level and performing the remaining
integrations we obtain

βe–ph–imp = −2

9
ζ(4)eα

τT 3

EFul
. (26)

Diagrams 2–4 in figure 1, as well as other diagrams of the same type, produce the
contribution of the same order. Apart from the longitudinal phonons contribution, two
diagrams including diagram 4 also contain the transverse phonons contribution which has
the additional factor(ul/ut )3 compared with (26).

4. Phonon drag effect

Here we will use the kinetic equations for electrons and phonons described in section 2
to find the dependence of the phonon drag contribution to the thermopower (the ‘drag’
thermopower) on temperature and impurity concentration.

It is quite clear that the drag thermopower is maximal if the phonons are scattered mainly
by electrons, and the growth of the frequency of other phonon scattering processes (e.g.,
scattering on impurities and on other phonons) leads to the suppression of the drag effect.
Indeed, for a system in the external electric field these processes, unlike the scattering
on non-equilibrium electrons, tend to eliminate the angle-dependent part of the phonon
distribution function responsible for the phonon thermal current.

As was discussed in section 1, the processes of phonon–phonon and direct phonon–
impurity scattering cannot be responsible for the low-temperature suppression of the drag
effect, but the processes of the inelastic scattering of electrons on impurities with the
emission or absorption of a phonon are well suited for this role. Here we will describe
the features of this suppression in detail.

We will calculate the phonon thermal current as a response to the external electric field
assuming that electrons are scattered mainly by impurities (the so-called ‘weak Mattissen
rule’ conditions). This regime is realized in the temperature range where the effective
frequency of the electron scattering on phononsνe–ph ∼ T 3/22

D (see [19]) is small compared
with that of the electron scattering on impuritiesνe–imp ∼ τ−1: T τ � (2D/T )

2. The fact
that the phonon scattering of electrons is negligible sufficiently simplifies the system of the
kinetic equations for electrons and phonons, because the electron distribution function in
this case does not depend on the phonon one.
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As was noted above, at low temperatures we must take account of the pure electron–
phonon interaction and inelastic scattering of electrons on impurities. For the considered
system with constant temperature the phonon kinetic equation assumes the form of
equation (12). According to [5], the vertexγ kij of the inelastic electron scattering on
impurities contains an additional factor of the order 1/ql compared with the vertex of
pure electron–phonon scattering [5]. This means that these processes are important for
phonons withql . 1.

Figure 2. Diagrams for the polarization operator which contributes to the drag effect.

At first we will rewrite the kinetic equation neglecting the inelastic scattering of electrons
on impurities (diagram 1 in figure 2):

|gλ(q)|2
∫

d3p dε

(2π)4
Rλ(ε,p, ω, q) ImGA(ε,p) ImGA(ε + ω,p+ q) = 0. (27)

Let us introduce the standard representation of the distribution functions of electrons and
phonons:

S(ε,p) = S0(ε)− ∂S0(ε)

∂ε
φ(ε,p) hλ(ω, q) = h0(ω)− ∂h0(ω)

∂ω
χλ(ω, q). (28)

As long as we assume that the main process responsible for the electron momentum
relaxation is the impurity scattering, the electron distribution function has the well known
form

φ(ε,p) ≡ φ(p) = eτvE (29)

wheree is the electron charge,v = dεp/dp is the electron velocity, andE is the external
electric field. After linearization the factorR in (27) assumes the following form

Rλ(ε,p, ω, q) = 1

4
[S0(ε + ω)− S0(ε)]

dh0(ω)

dω
[φ(p+ q)− φ(p)− χλ(q)]. (30)

Assuming the single-band parabolic electron spectrum, in the absence of the Umklapp
processes (27) is satisfied ifχ(q) = eτqE/m, wherem is the effective electron mass.
Substituting this function into the formula for the phonon thermal current (13) we obtain
the drag contribution to the thermoelectric coefficientβ corresponding to the neglect of both
the Umklapp processes and the inelastic electron scattering on impurities

β0
g = −

2π2

45

eτT 3

mu3
l

. (31)

This is the known result that may be obtained via solving the system of classical Boltzmann
equations for electrons and phonons (see [19],§82).

Now let us consider the diagrams with the inelastic impurity scattering vertices. It is
easy to see that in the combination of the distribution functionsR(ε,p, ω, q) for diagram 2
the wavevectorq is replaced by the momentump′ transferred to the impurity with the
addition of the integration overp′. From the other hand, the contribution of diagrams 3
and 4 is similar to that of the diagram 1, but contains an additional factor of the order 1/ql
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and may be omitted. Substituting the expressions for the verticesg andγ from (19) into
(12) we obtain the equation forχ(q)

0=
∫

d3p dε

(2π)4
[S0(ε + ω)− S0(ε)]

dh0(ω)

dω
ImGA(ε,p)

×
[
E2
F (qeλ)

2[φ(q)− χ(q)] ImGA(ε + ω,p+ q)

+ 9

πντ

∫
d3p′

(2π)3
(p′eλ)2[φ(p′)− χ(q)] ImGA(ε + ω,p+ p′)

]
. (32)

The integrals overp appear as follows

1

πντ

∫
d3p

(2π)3
ImGA(ε,p) ImGA(ε + ω,p+ q) =

{
(1/2ql) arctan(ql) (q < 2pF )

∼(2pF/q)2/(ql)2 (q > 2pF ).

(33)

(Compare with (44) in [4].) Forl−1� q < 2pF the integral in (33) is equal toπ/4ql.
In cubic lattices the electrons do not interact directly with transverse phonons (the vertex

gλ(q) for such phonons is zero). Therefore, as can be seen from equation (32), the transverse
phonons in a cubic lattice are not ‘dragged’. For longitudinal phononseλ = q/q. Thus,
the following condition must hold to satisfy (32) forql � 1

E2
F q[φ(q)− χ(q)] = 9

πντ
χ(q)

∫ 2pF

0

d3p

(2π)3
(pn)2

p
. (34)

Heren = q/q. The upper limit in the integral overp is chosen in accordance with (33).
The divergence of the integral atp > 2pF is purely formal, because the expression (29) for
φp was derived in the linear approximation and is true only near the Fermi level. Therefore,
according to (33) it is clear that the contribution of thep > 2pF domain is negligible. It
is quite natural since 2pF is the maximal momentum that can be transferred to an impurity
by a Fermi electron without its leaving the Fermi-surface.

Finally, we obtain

χ(q) = ql

ql + 24/π
φ(q). (35)

From this it follows that the smaller the phonon wavevector, the more its drag is suppressed.
Substituting the phonon distribution function (35) into the expression for the phonon thermal
current (13) and integrating it overq andω we obtain for the relative correction to the drag
thermopowerβg

βg − β0
g

β0
g

= −1.06
h̄

EF τ

ulpF

T
. (36)

To facilitate comparison with the experimental data we will rewrite this result for the
drag contribution into the thermopowerSg

Sg = 2π2

45

T 3

n0eu
3
l

(
1− 1.06

h̄

EF τ

ulpF

T

)
. (37)

Heren0 is the number of electrons in the unit volume. The only dependence of the drag
thermopower on the impurity concentration is connected with the correction (36). Note that
the factorh̄/EF τ in (37) has the same order as the impurity concentrationcimp = Nimp/N
(see (17)).
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Thus, in accordance with the simple estimate (1), at low temperatures the relative
correction to the drag thermopower induced by the inelastic electron scattering on impurities
may be much larger thancimp. Accurate study of the integral (33) shows that sufficient
deviations from the first two asymptotes occur only in the narrow domain whereql ∼ 1
where the crossover between the asymptotes takes place. Here the integral (33) quickly
achieves the constant value 1/2, andSg → 0. Hence it follows that (36) is actually valid
in the wholeqT l & 1 domain, and the drag thermopower is completely suppressed at
cimp ∼ T/2D. Thus at low temperatures the drag effect may be suppressed even by a
relatively small amount of impurities.

The result (37) was obtained in the assumption that the Umklapp processes are
insufficient. However, the kinetic equation (32) can be easily generalized to incorporate
these processes. To do this we must replace the argumentsq in the functionsφq and
GA
ε+ω,p+q in the first term in square brackets in (32) byq +G, whereG is the reciprocal

lattice vector, and add the summation overG in this term with the restrictionq+G < 2pF ,
including, perhaps, the term withG = 0 (we will omit this restriction in all formulae to
make them more readable). All functions are assumed to be periodic in the reciprocal space,
for example,GA(ε,p+G) = GA(ε,p), φp+G = φp, and the integral overp is taken over
the first Brillouin zone. After integration overp andε in (32) according to (33) we obtain

χ(q)

(∑
G

1

|q +G| +
24

πq2l

)
=
∑
G

φq+G
|q +G| . (38)

It is interesting to investigate the effect of impurities on normal and Umklapp processes
separately. In the absence of the inelastic scattering of electrons on impurities the second
term in brackets in (38) is absent and the corresponding functionχ0(q) may be expressed as
the sum of the ‘normal’ and the ‘Umklapp’ terms induced by the corresponding processes

χ0(q) = χ0
N(q)+ χ0

U(q) (39)

where

χ0
N(q) =

eτ

m
qE χ0

U(q) =
eτ

m

∑
G

′ GE
|q +G|

/∑
G

1

|q +G| . (40)

The prime at the sum emphasizes the obvious fact that this sum does not contain the term
with G = 0. Note that the normal term is non-zero forq < 2pF and the Umklapp term is
non-zero only for those phonons which are able to induce the Umklapp processes. The total
phonon distribution function has gaps on all surfaces in the phonon Brillouin zone where
the Umklapp processes of a certain type are activated; these surfaces are characterized by
the equations|q +G| = 2pF with different reciprocal lattice vectorsG.

Then we similarly separate the ‘normal’ and the ‘Umklapp’ contribution toχ(q) in
(38) (the ‘normal’ contributionχN(q) is defined asχ(q) in the absence of the Umklapp
processes, and the ‘Umklapp’ termχU(q) is the remainder). The normal term is suppressed
by impurities through the same factor as in (35), and the Umklapp term is suppressed as
follows (we omit the insufficient correction of the order(Gl)−1

χU(q)/χ
0
U(q) =

∑
G

1

|q +G|
/(∑

G

1

|q +G| +
24

πq2l

)
. (41)

It is easy to see that the normal term is suppressed somewhat stronger than the Umklapp
one, because the sums in (41) contain additional positive terms which effectively decrease
the ratio of the impurity term to the phonon term. However, this effect is significant only for
phonons with|q| ∼ |q +G|. At low temperatures these phonons are very rare and do not
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make a sufficient contribution to the thermal current. The difference in the suppression
factors for normal and Umklapp terms may be sufficient at intermediate temperatures,
especially if the corresponding terms in the thermal current, being always opposite in sign,
are approximately equal in magnitude.

5. Discussion

Let us compare the different kinds of phonon contributions to the thermoelectric coefficient.
As we have shown above, the phonon effects in impure metals manifest themselves as
corrections to the diffusive component of the thermoelectric coefficient (βe–ph andβe–ph–imp),
as well as to the drag contributionβg. Here we will write out the order-of-magnitude
estimates for all the studied terms in the thermopowerS:

S0
d ∼

1

e

T

EF
(42a)

S0
g ∼

1

e

(
T

2D

)3

(42b)

Se–ph ∼ 1

e

(
T

EF

)2(
T

2D

)2 1

cimp
(42c)

Se–ph–imp ∼ 1

e

(
T

EF

)2
T

2D

(42d)

1Sg ∼ −1

e

(
T

2D

)2

cimp. (42e)

The correction owing to the Bloch–Grüneisen contribution to conductivity is much less
than the value (42c) by the parameter(T /2D)

2 and may be neglected, while the correction
owing to interference contribution to conductivity has the same order as (42d) and is included
thereto. The estimate (42c) holds if Se–ph � S0

d ; this inequality coincides with the condition
of the ‘weak Mattissen rule’ and may be rewritten ascimp � (T /EF )(T /2D)

2. The estimate
(42e) is correct untilcimp ' T/2D; in the opposite case the drag thermopower is completely
suppressed. Note that the impurities always decrease the magnitude of the thermopower.

Comparing different contributions (5) at a certain temperatureT � 2D, one can sort
out three concentration domains where different corrections dominate:

T

EF

(
T

2D

)2

� cimp � T

EF
: S0

g � Se–ph � 1Sg (43a)

T

EF
� cimp � T

2D

: 1Sg � Se–ph � Se–ph–imp (43b)

T

2D

� cimp � 1 : Sg → 0 Se–ph–imp � Se−ph. (43c)

Thus, we see that the phonon drag effect plays the most important role in the
thermopower of impure metals until it is completely suppressed atcimp ∼ T/2D. At
concentrations (43b) the dependence of the thermopower on impurity concentration is
determined by the suppression of the drag effect according to (42e), while at small
concentrations (43a) it is governed by the Bloch–Grüneisen correction (42c). In the opposite
case (43c) the interference correction (42d) can become important. In addition, in this latter
region the inequalityqT l � 1 violates and the diagrams with multiple impurity lines become
significant.
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The obtained results are also notable for another interesting aspect. As follows from
(42b), leaving the inelastic interference processes out of account, the drag thermopower
Sg (which is the observed value) of an impure metal has the same magnitude as the
thermopower of a very pure metal where one can neglect the electron–impurity scattering
and consider only the phonon-induced electronic transport [1, 19]. This unusual feature of
the thermopower is related to the fact that the decrease of the thermoelectric coefficient at the
transition from pure to impure samples owing to the shortening of the electron relaxation
time is accompanied by the same decrease of the conductivity. As a result, their ratio
remains constant. This interesting observation highlights the role of the inelastic electron
scattering on impurities in the suppression of the drag thermopower in impure metallic
systems.

Experimentally, the effects studied in the present paper could be observed in dilute
substitutional alloys at sufficiently low temperatures,T . 2D/5 or even lower. We
are not aware of the detailed experimental investigations of the thermopower at different
concentrations in the relevant temperature range. Recently an experimental study of the
thermopower was done for metastable Al1−xSix solid solutions [17] and the suppression
of the drag contribution to the thermopower by small Si concentration was found to be in
qualitative agreement with our conclusions. However, as the situation is complicated by
a strong modification of the Al phonon spectrum in Al1−xSix , the quantitative comparison
with the data of [17] would be unreasonable. To verify the present theory and provide a
deeper insight into the phonon effects in the thermopower of impure metals more detailed
experimental studies of the different low-temperature contributions would be desirable.

In conclusion, we have studied the phonon effects in the thermopower of impure metallic
systems. We found that phonons affect the diffusive component of the thermopower (the
contribution of equilibrium phonons), as well as induce the drag component (the contribution
of non-equilibrium phonons), and the latter one usually dominates. At the same time,
the dependence of the drag thermopower on temperature and impurity concentration at
low temperature is strongly affected by the processes of inelastic scattering of electrons
on impurities with the emission or absorption of a phonon. These processes reduce the
total magnitude of the drag thermopower and completely suppress it when the impurity
concentration reachescimp ∼ T/2D. This is the main mechanism of the low-temperature
suppression of the phonon drag in impure metals and alloys.
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